
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

Split Second Motion Blur
Matt Ritchie Greg Modern Kenny Mitchell

Disney Interactive Studios

Figure 1: Motion blur system in Split/Second from left to right; image space adaptive at high speed, augmented with texture space blur.

Introduction
Motion blur is key to delivering a sense of speed in interactive
video game rendering. Further, simulating accurate camera optical
exposure properties and reduction of temporal aliasing brings us
closer to high quality real-time rendering productions. We
describe a motion blur system that integrates image and texture
space motion blur for smooth results with less than one sample
per pixel. We apply the algorithm in the context of a deferred
shading rendering engine used in Split/Second (Disney: Black
Rock), but the method also applies to forward rendering, ray
tracing or REYES style architectures.

Method
Image Space Motion Blur Motion blur may be performed as
a post process in image space using scene velocities stored per-
pixel [Rosada 2007]. Such vectors are typically held in a packed
G-Buffer format as 2D 8-bit components or further packed to an
8-bit vector palette. The averaging filter kernel then performs
sheared sampling along the direction of such vectors from a stored
rendered image.

The quality of this method depends on the number of samples
contributing to the averaging calculation of each resulting blurred
pixel. To guarantee artifact free results we require to recover
enough samples to satisfy spatial and temporal frequency bounds
[Egan et al 2009]. For example, a simple pixel with velocity of 16
pixels per second requires a sampling kernel with 16 samples.
With a single image to sample from and no layered depth
information, we do not account for temporal occlusion effects.

The speed of this method depends on the bandwidth of generating
and storing motion vectors, then recovering image space veloci-
ties for blur sampling in the post process. Here, we describe an
improved algorithm through the use of vector motion IDs.

Vector Motion IDs For each visible pixel of each rendered
object a pixel velocity is stored. Under perspective project image
space motion vectors vary greatly across the screen. However, in
scenes of high velocity coherence, where world space velocity is
constant for the majority of the scene, these motion vectors may
be reduced to a shared ID representing the world space velocity.
In the post process stage, a recovery of the image space velocity is
achieved by inverse projection of the world space velocity
matching the sampled motion ID. With 4 bits sufficient to store
motion IDs of 16 scene elements with different velocities, this
minimizes the storage space and bandwidth required for velocities
and reduces time spent in the G-Buffer generation pass.

Tiled Adaptive Sampling With a few scene velocities under
perspective projection we observe a typically smooth and well
partitioned variation in the magnitude of image space vectors.
Applying a fixed size filter kernel sufficient to account for
maximum velocity without artifacts results in too many samples
overall to perform the effect in real time. Without scope for
variable length sampling loops supported by shader model 3.0
graphics hardware, we therefore apply a tiled classification of
velocities to select from a small number of pre-optimized shaders
with fixed kernel sizes. This classification may be pre-determined
for known camera/scene behaviors, calculated from image space
bounds of object based velocities or extracted from results of
motion ID generation in either a CPU or GPU compute style
processing framework.

Texture Space Motion Blur At this point we still have a limit
on the velocities we can represent effectively in real-time with
high quality. We eliminate this limitation by combining above
with texture space motion blur. Loviscach [2005] shows that
existing MIP mapping hardware may be used to apply motion blur
to textures. While this method samples anisotropically along the
motion vector, we use smaller MIP levels primarily to act as a
pre-computation of the wider sampling kernel. Thus allowing us
to perform less than one motion blur sample per pixel at run-time
without blemishes. For fine grained control, we override regular
shader sampling calculations to bias the computed texture level of
detail based on coarse object velocity and per pixel distance.

Discussion
Combining image and texture space motion blur methods enable
us to smoothly blur the scene’s content with high quality.
Adaptive sampling provides sufficient blur on geometry motions
not handled by texture space blurs. In addition, non-anisotropic
texture fetches, which would otherwise only blur the textures
appearance without direction, are possible when augmented with
image space vector motion blur. A run-time frequency analysis of
image content may further reduce required number of samples,
e.g. on smoothly varying low frequency textures.

EGAN, K. TSENG, Y.-T., HOLZSCHUCH, N., DURAND, F. AND
RAMAMOORTHI, R. 2009. Frequency Analysis and Sheared
Reconstruction for Rendering Motion Blur. In ACM Transac-
tions on Graphics 28, 3.

ROSADO, G. 2007. Motion Blur as a Post-Processing Effect. In
GPU Gems 3, H. Nguyen, Ed. 575-582.

LOVISCACH, J. 2005. Motion Blur for Textures by Means of
Anisotropic Filtering. EG Symposium on Rendering, 105-110.

http://www.kunzhou.net/2009/GPUGI.pdf

	Introduction
	Method
	Discussion

